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Executive Summary 
 
With support from the ARPA/RL Planning Initiative (ARPI) we developed simulation, 
visualization and evaluation technology for Air Campaign Planning. We produced the Air 
Campaign Simulator (ACS) and demonstrated it in scenarios involving Korea, Tunisia, and the 
Persian Gulf (Holmes, 1995).  A valuable innovation of ACS was a representation of centers of 
gravity to support target systems analysis.  
 
In 1995 we developed the theory that reasoning involves concepts that are grounded in physical 
action or are metaphorical extensions of physical concepts (Cohen, 1997; Cohen et al., 1997; 
Johnson, 1987).  Supported by HPKB, we showed how concepts in Cyc’s base-level ontology 
are composed from primitives that represent physical actions (Cohen, 1998, Cohen and Oates, 
1998).  We developed representations based in dynamics, instead of the state-based 
representations common in AI (Bradley and Easley, 1997; Campbell and Bobick, 1995).  We 
started to think of land campaigns in terms of the dynamics of the battlefield, the ebb and flow of 
influences, the ability to move and apply force (Rosenstein and Cohen, 1998).   
 
One consequence of this change in perspective is that we now have algorithms to search forward 
in a continuous battlespace.  We need not discretize continuous space and time – a perilous 
process – but instead we can look forward in space and time for tactically advantageous 
situations.  
 
In 1997 we built a simulation of physical behavior called AFS, the Abstract Force Simulator (see 
Section B5).  The basic units in AFS have physical attributes such as mass, inertia, and friction 
(Atkin et al., 1998).  It is easy to add other layers of attributes to specialize these units to a 
particular domain, in particular, simulations of movements and engagements between forces.   
 
Capture the Flag (CTF) is a simple war game in which the basic physical units have the attributes 
of military units:  the ability to inflict and absorb damage, the ability to move, consumption of 
resources, and so on.  The overall plan was to use the Abstract Force Simulator (AFS) and CTF 
developed at Umass to build and evaluate military courses of action (COAs). Finer granularity 
(e.g., vehicle movements in ModSAF) is not appropriate for COA evaluation. The units we 
implemented are automata capable of limited reactive intelligence.  This means the commander 
controls their activities at the macro level (e.g., telling them to attack a site) and the units figure 
out micro-control issues such as path planning.  
 
The two main thrusts of the completed work are visualization and clustering of battlefield 
dynamics, and building realistic models of operational combat for Capture the Flag. 
  

1. Visualizations of Battlefield Dynamics 
 

Military planners sketch courses of action in a stylized way illustrated in Figure 1.  The icons 
represent units and the tactical engagements between them.  Other icons represent terrain, such 
as mountains.  Lines represent natural boundaries, roads, and areas of responsibility.  Phase lines 
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(denoted PL) are places that units meet or otherwise adjust the timing of their operations.  
Although this kind of diagram represents the commander’s intent – what he or she expects to 
happen – it clearly does not represent what actually happens when units move and engage.   

 
Figure 1.  A diagram of a course of action, taken from Army Field Manual FM 101-5.   

 

To grasp the dynamics of courses of action such as the one in Figure 1, the commander’s staff 
engages in war games.  These laborious, manual exercises typically explore only a tiny fraction 
of the space of possible tactical situations.  This is why we developed the Capture the Flag 
system.  Like a “chess master in a box” that you can buy at any games store, Capture the Flag 
includes a powerful algorithm for playing war games, as well as a simulation of the dynamics of 
military engagements.  Humans can play against Capture the Flag, or the system can play itself, 
or it can follow – more or less strictly – plans supplied by humans.  In this way, military courses 
of action can be explored in Monte Carlo simulation against an intelligent adversary.   

 

The problem is to visualize the results of hundreds of Monte Carlo trials, each of which is a 
lengthy time series of a vector of state variables, so as to inform the commander of the strengths 
and weaknesses of a course of action.  Following an introduction to the Capture the Flag system, 
we will describe a visualization of the dynamics of simulated courses of action.  This 
visualization, called a probabilistic dynamic map, relates dynamical properties of a war game to 
the probability of winning the game.  Sometimes, a game produces clusters of outcomes that are 
so qualitatively different that they should be visualized separately.   We describe an algorithm for 
finding these clusters automatically.   
 
We developed dynamic maps to visualize the variable dynamics of Monte Carlo trials in Capture 
the Flag, as well as the behavior of mobile robots and the semantics of verbs [5]. State variables 
are measures of situations such as locations and velocities of units, force ratios, attrition rates, 
and so on.  A trajectory is a time series of the vector of one or more state variables. Each 
simulation of a course of action generates a trajectory.  A map is an overlay of dozens or 
hundreds of trajectories. A map for a course of action is an overlay of trajectories for that course 
of action.  Said differently, a map is a compilation of many experiences executing a course of 
action.  For example, Figure 2a shows ten engagements between a Blue unit that is trying to 
capture a Red flag and a Red unit that is trying to defend its flag.  Ten trajectories of a single 
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state variable – distance between the attacking Blue unit and the Flag – are shown.  The colors 
denote who won the engagement; Red successfully defended its flag six times.  Games tend to 
cluster into a handful of qualitatively different engagements.  Figure 2a shows two distinct ways 
that Red can win (corresponding to blocking Blue – the squiggly lines – and directly engaging 
and attritting Blue, the straight red lines), and one way in which Blue can win (corresponding to 
a direct engagement that attrits Red).  

1.1 Probabilistic Maps 

If one colors trajectories by outcomes and lays a grid over the map, as in Figure 2a, then the 
proportion of trajectories of a given color in a given grid cell is an estimate of the probability of 
the corresponding outcome given that the trajectory enters that cell.  More formally, let x and t be 
a state variable and time, respectively, and let the coordinate x,t define a cell of the map, of some 
fixed area, centered on the point x,t.  Then the probability of an outcome, such as a win, is 
estimated as 

Pr(win | x, t) =
number of winning trajectories through x,t

total number of trajectories through x,t
 . 

We can generate a three-dimensional map from coordinates x, t, Pr(win|x,t), as shown in Figure 
2b.  Every cell on the surface is a probability of a Red win for a trajectory that goes through the 
cell defined by x,t.   

The landscape plot in Figure 2b shows a probabilistic map constructed in this way for 1000 trials 
in which a Blue unit attacks a Red flag.  The blue spot on the surface represents a state of a 
game; its vertical altitude represents the probability that Red will win in this state.  The arrow 
leaving the blue spot is the most common trajectory leaving that state.  You can see that Red is 
most likely to lose.   

Blue distance �
to objective

Time

Probability of Red success

Blue distance �
to objective

Time

 
Figure 2  On the left (2a) is a map of ten trajectories, time series of distance to the objective.  On the right (2b) is a 
map of 1000 trajectories, showing the same state variable plotted against the probability of a successful outcome.   

The probabilistic map in Figure 2 is “craggy,” not flat or smoothly rising or falling.  Sharp slopes 
on dynamic maps correspond to what commanders call decisive points.  These are points or 
regions where the probability of success changes relatively quickly.  The idea of nonlinearity, 
particularly nonlinear dynamics, is slowly permeating tactical planning centers in the U.S. 
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military, and can be seen as a natural successor to Clausewitz, who revolutionized tactics by 
viewing warfare as a branch of physics.  The surface in Figure 2b appeals to commanders 
because it provides them an abstract view of the dynamics of the battlefield, one in which 
dangerous areas for both sides are explicit.  Commanders recognize that if they have maps like 
Figure 2b and their opponents do not, then they have an information advantage that they might 
exploit by “steering” their opponents into advantageous areas of the map. 

As noted, the maps in Figure 2 represent the dynamics of engagements between a single Red and 
a single Blue unit.  Will the same approach work – i.e., produce legible, informative surfaces 
relating state variables to probabilities of success – for more complex scenarios, such as the one 
in Figure 2?  We have found no analytical answer to this question.  In fact, the same approach 
works well for complex scenarios, as we describe later, yet fails for some simpler ones.  For 
instance, when we changed the scenario for Figure 2 a little, to have two Blue units attack a Red 
flag defended by two Red units, the resulting map was unreadable.  Figure 3 shows a 
“thresholded” version of the map:  As before, the axes represent time and the state variable 
(although in this case the state variable is the relative strength of the two units) and the cell 
colors represent probabilities.  Red cells represent probabilities of Red wins greater than a 
threshold value, and blue cells correspond to high probabilities of Blue wins.  There is no 
obvious continuity or pattern relating these probabilities to time and the state variable, as there 
was in Figure 2. 

 

Figure 3..A probabilistic dynamic map for a two-on-two scenario in which two Blue units try to capture a Red flag 
defended by two Red units. The state variable (horizontal axis) is the relative strength (or mass) of the units.  The 
vertical axis represents time.  The map has been thresholded so all cells with a high probability of win for Blue are 
colored blue, and similarly for Red. Tactically, the attacking units might concentrate on the flag, or the defending 
units, or split their efforts between these goals.  This tactical variability is one reason that the map is not very 
informative.   

 

The reason is that the two-on-two situation can unfold in several qualitatively different ways, and 
when the trajectories for these different dynamics are superimposed in a single map, the result is 
pretty meaningless.  It is as if we tried to visualize the dynamics of several different pieces of 
music, or normal and irregular heartbeats, or placid and volatile markets, in one map.  In any of 
these cases, we would first group trajectories that have similar dynamics, then build a separate 
map for each group.   

mass differential

time

favors Red favors Blue
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1.2 Clustering by Dynamics 

We developed a method for unsupervised clustering of univariate, categorical time series called 
Bayesian Clustering by Dynamics (BCD).   Suppose we represent a military operation at time t 
with a state variable that takes one of k values.  Between time t and time t+1, the state of the 
operation changes or remains the same, but in either case can be represented by a transition from 
a state { }kst K1∈  to the next state  st+1 ∈ 1Kk{ }.  Clearly, k × k  state transitions are possible, 

and the frequencies with which transitions i,j occur in a military operation of duration N time 
steps can be stored in a transition table like this one: 

 a b c d e 

a 17 10 0 16 1 

b 0 14 0 3 2 

c 0 0 3 8 1 

d 0 0 5 12 0 

e 6 0 0 0 23 

 

By convention, the vertical axis represents the state of an operation at time t, the horizontal axis, 
the state at t+1.  Thus, the operation exhibited 10 transitions from state a to state b, and 16 
transitions from a to d.  The sum of the frequencies in a transition table is N–1 for an operation 
of duration N.   

Suppose we run a Monte Carlo analysis of 100 variations on a course of action.  We will have 
100 tables, like the one above, each representing a single “playing out” of the plan in Capture the 
Flag.  To cluster these variations, to find the ten or twenty qualitatively different ways the plan 
plays out, we need a way to judge the similarity of transition tables.  The Kulback-Leibler (KL) 
distance is such a method.  We assess the KL distance for every pair of plan instances and cluster 
together those that are similar.  Clustering is agglomerative, which means we begin with each 
plan instance in its own cluster and repeatedly merge the most similar clusters; or failing that the 
second most similar, and so on; stopping only when no further merging would improve a quality 
metric.  The metric in this case is the marginal likelihood of the data given the clustering so far.  
The BCD algorithm essentially does hill-climbing in a space of possible clusterings of military 
operations, where the height of the hill associated with any given clustering is the marginal 
likelihood.   

BCD has been tested with data from Capture the Flag and with time series of robot data, 
financial data, and Bach fugues.  In particular, we used BCD to cluster data from 81 trials of the 
two-on-two scenario that produced the unsatisfactory map in Figure 3.  BCD produced eight 
clusters.  One of them contained 94% of the plan instances in which Blue won.  Three contained 
plan instances in which Red always won, but interestingly, the manner of Red’s victory was very 
different in the three clusters; for example, in one cluster, Red won by attrition, in another it 
made a mad dash to grab the flag.  Four clusters contained cases in which Red won (in different 
ways) or time expired. 

Once the Monte Carlo trials are clustered, one simply builds a map, or shows the trajectories, for 
each cluster.  Figure 4 shows the trajectories that constitute each of two clusters, one in which 
Blue always won, one in which both sides won some engagements. The dynamics of the clusters 
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are quite different; one can see why superimposing trajectories from these (and the other six 
clusters) produces an illegible map (Fig. 3).   

 

 
     favors Red                                      favors Blue 
                           mass differential 

 
     favors Red                                     favors Blue 
                          mass differential 

Figure 4. Maps for two clusters produced by the BCD algorithm.  The state variable, mass differential (horizontal 
axis), behaves differently over time (vertical axis) in the clusters.  On the left, the trial begins with Blue losing mass 
through attrition relative to Red but in most cases these losses “peak” early and Blue begins to regain ground relative 
to Red.  In three cases, the differential later swings back toward Red, but Blue wins the games anyway.  On the 
right, in nearly all cases, Blue loses mass monotonically throughout the game, and in most cases loses the game. 

1.3 Maps for Complex Scenarios 

The complex scenario in Figure 2 involves nine Red and nine Blue units with three different 
kinds of dynamics: mobile units, air cavalry, and artillery; and courses of action that involve at 
least two tactical phases.  To build an informative map for this scenario, we need informative 
state variables.  Because probabilistic maps devote only one of three dimensions to a state 
variable, it is necessary to design state variables that effectively summarize the entire battle.  
One, Mass-Near-the-Action (MNTA), is a measure of how much effective mass is concentrated 
near the center-of-mass (COM) of the opponent. The effective mass of a side is the sum of the 
effective mass of each of its units, and the effective mass of a unit is its average strength against 
each of the remaining enemy units. Strength is a unit's mass – roughly, how big it is – multiplied 
by unit-type effects (for example, artillery has a multiplier of 1.333 against infantry). Thus 
effective mass combines the masses of the units and the types of the units and the types of the 
enemy units.  MNTA, in turn, is implemented as follows:  For one side, say Red, look at each 
Red unit that is artillery or is close to Blue’s center of mass, and measure the effective mass of 
each unit against all the Blue blobs that it is close to. (Artillery is assumed to be always “close” 
to the action because it can operate over long ranges.)  Roughly, MNTA measures the degree to 
which units are engaged with opposing units.   

Figure 5 shows the trajectories of MNTA for 100 Monte Carlo trials corresponding to the 
scenario in Figure 2.  Trajectories are colored red if Red forces captured the flag in the south-
west corner, blue if the Red forces were disabled by Blue, and green if time expired.  MNTA is 
shown on the vertical axis, time on the horizontal axis.  Clearly, Blue won most of the trials.  In 
general, trials begin with Blue MNTA increasing to a maximum value at around time 100, then 
dropping off as Red and Blue units are destroyed or disabled.   
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Figure 5.  The trajectories of 100 trials of the scenario in Figure 2.  Blue lines denote Blue victory, red lines, Red 
victory, and green lines indicate that time expired before either side won.  The horizontal axis is time, the vertical 
axis is MNTA.   
 

Two probabilistic maps of these trials are very informative.  Recall that a probabilistic map for 
an outcome, such as Blue winning, has three coordinates: a state variable, time, and a probability 
of the outcome given that a trajectory passes through the cell defined by coordinate x,t.  An 
alternative is to calculate and plot the probability of winning if a trajectory does not go through a 
cell:   

Pr(win | not x, t) =
number of winning trajectories that don' t go through x, t

number of winning trajectories
 

Both kinds of map are shown in Figure 6, in which higher probabilities are represented by 
brighter cells (black cells in Fig. 6a and gray cells in 6b are those which contained no 
trajectories).  The axes of these figures are normalized so that time runs from 0 to 100 (horizontal 
axis) and so does MNTA (vertical axis).  Figure 6a is for the probabilities Pr(win | x,t) and Figure 
6b is for Pr(win | not x,t).  The former tells much the same story as Figure 6, but the latter shows 
something surprising:  A black cell at time = 15, MNTA = 47.5, corresponding to a zero 
probability of a Blue win if Blue’s trajectory does not transit that cell.  To a military commander, 
Figure 6b gives a remarkable imperative:  Go through this cell, or lose!  By avoiding the lighter 
cells in Figure 6b, the commander can trace out the safer trajectories, because lighter cells 
correspond to higher probabilities of winning if one’s trajectory doesn’t transit the cell.   
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Figure 6.  Probabilistic dynamic maps for 100 trials of the scenario in Figure 2.  On the left, brightness of a cell is 
proportional to the probability of a Blue win given that a trajectory transits that cell.  On the right, brightness is 
proportional to the probability of a Blue win if a trajectory does not transit a cell.   
 

1.4 Nearest-neighbor clustering 

 
The nearest-neighbor technique allows one to take an n-dimensional space of possible decisions 
and determine where to take actions that will lead to desired outcomes. One possible 
visualization from this work is a chart where decision boundaries are highlighted with 
probabilities of outcomes clearly delineated.  
 
 
 
 

Discussion 
Probabilistic dynamic maps represent probabilities of outcomes given the dynamics of processes.  
We illustrated the idea by visualizing the probabilities of wins in war games given the dynamics 
of state variables such as distance to a goal and MNTA, but we suspect the technique is more 
general.  Monte Carlo simulation is a valuable way to explore a state space, but not if one must 
pore over the trajectories of state variables in every trial.  By superimposing these trajectories in 
a map, and coloring trajectories by outcomes, a great deal of simulation data can be reduced to a 
surface that represents conditional probabilities of outcomes.  As we have seen, one can 
condition the probabilities on the event that a trajectory passes through a cell, or, as in Figure 6b, 
on the event that a trajectory passes through some other cell.   

Some human art goes into probabilistic dynamic maps, but we are working to automate the 
process.  One trick is to find an informative state variable.  By informative we mean the state 
variable over time is a good predictor of outcomes.  Finding informative state variables is a 
statistical model selection problem.  One could easily use regression or Bayes’ networks, or 
related techniques, to select predictive state variables were it not for the requirement that the 
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state variable over time be predictive.  What we need, then, is a characterization of the dynamics 
of a state variable which can be used as a predictor of outcomes.  One way to characterize the 
dynamics of a variable is to cluster the trajectories of the variable by their dynamics, as described 
previously, then use the cluster membership of a trajectory as a predictor of the outcome of the 
trajectory.  In a recent experiment, this approach selected “distance from the flag” and “relative 
mass of Red and Blue units” as the state variables whose dynamics best predict the outcome of 
the two-on-two scenario described earlier.  These results are very preliminary but suggest that 
one aspect of building probabilistic maps might be automated.   

Another kind of automation is provided by the BCD algorithm.  Maps can be difficult to interpret 
when several qualitatively different dynamics are superimposed  (Fig. 3), but finding 
qualitatively different trajectories by hand is tedious, error-prone work.  The BCD algorithm 
saves us the trouble.  It clusters trajectories with similar dynamics, so when we plot maps for 
each cluster, the dynamics are much clearer (Fig. 4).    

It is equivocal whether maps would be more legible, informative, and acceptable to military 
experts if they did away with the time dimension.  Phase portraits, which physicists use to 
visualize dynamics, usually plot a state variable x at time t against x at t+i, so time becomes 
implicit and relative, but transitions from state to state are clearer.  For some aspects of war 
games absolute time matters, for others, relative time suffices.  Phase lines (Fig. 1) describe both 
kinds of time:  Some dictate where a unit should be at, say, 1300 hours, others dictate that a unit 
should not proceed beyond the line until it meets another unit.  The explicit time dimension of 
our current maps makes it easy to represent absolute time constraints, but may create the illusion 
that an event must happen at an absolute time instead of a relative time.  On the other hand, 
absolute time constraints are difficult to represent in phase portraits. 

From the military perspective, the greatest weakness of probabilistic dynamic maps is that they 
do not tell the commander what he or she should do in a given state.  Clearly, if a state is 
disadvantageous, the commander should move to a better one, but our maps do not specify how 
the commander should do this.  Perhaps the right course is to retreat, perhaps it is to get 
reinforcements, or seek high ground, or engage the opponent.  As time passes and the 
commander acts, the state of the game changes, so we can see a forward relationship between 
action and states in every trajectory. What we lack is a backward relationship that tells the 
commander what he or she should do to effect a transition to a desired state from the current 
state.  Once this problem is solved, probabilistic dynamic maps will be an effective planning 
tool. 
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2. Capture the Flag 
The second major area of work was on the Capture the Flag system.  Capture the Flag is a 
simulator of war games and an automated planner that commands units on one or both sides of a 
conflict.  Figure 7 is a screen from one scenario, modeled after a training exercise at the 
Command and General Staff College at Fort Leavenworth.  Red units are heading toward a Blue 
flag in the southwest corner of the map; meanwhile, Blue forces have broken through a Red line 
in the northern part of the map and are about to give chase.   

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  A screen from Capture the Flag, 73 time 
steps into a simulated course of action. Icons 
represent mechanized, infantry, artillery, and air 
cavalry units.  Colored areas represent terrain:  
Light brown is open terrain; dark brown is hilly 
terrain; blue is a lake; green, forest; and gray, towns. 
Lines represent roads and boundaries of areas of 
responsibility. 

 

In this scenario, both Red and Blue forces are controlled by the planner, that is, the machine is 
playing against itself.  This is the easiest way to generate Monte Carlo evaluations of courses of 
action:  One creates a version of the planner for each side, Red and Blue; specifying a course of 
action for each; and the planners attempt to achieve the specified goals by implementing the 
specified tactics.  Because the game is a dynamical system, small differences in the timing of 
actions and initial placements of units produce highly variable outcomes.   
 
War games in Capture the Flag are played in a virtual world of “nearly three dimensions”:  In 
addition to latitude and longitude we have elevation, although all hills are the same height.  
Opposing land and air units attempt to capture each other’s flags.  They can exploit or be 
hindered by terrain features such as hills, rivers, and terrain types such as forest and swamp.  
When units engage, either directly or at a distance, attrition is modeled by modified Lanchester 
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equations.  In addition, the dynamics of engagements are influenced by models of psychological 
factors – fear, morale, fatigue and the like.   
 
Opposing units can be controlled by humans or by the GRASP planner1, and a common 
configuration is for humans to play against GRASP.  A natural interface allows human players to 
direct their units on the battlefield, and the units themselves are capable of intelligent reactive 
behavior to carry out directives without constant supervision (e.g., one can direct a unit to attack 
another and it will figure out how best to get there, which formations to adopt, and so on).  
Tempo strongly influences the outcomes of these games.  When human players lose the tempo, 
GRASP presses its advantage, and a tactical disadvantage quickly spreads to a scenario-wide loss 
of initiative.  The human becomes reactive and eventually loses the game.   
 

2.1 How Capture the Flag appears to players 

 
The setup of a Capture the Flag scenario is shown in Figure 8.  One panel of the display is a map 
with units arrayed in a starting configuration. (Configurations are selected by the system but may 
be changed before the game begins, to model prepositioning.) The other panel shows the 
parameters of the game.  For instance, one can select the number of flags for each side (Red and 
Blue); the number of brigades of each of six kinds (Armored, Mech., Light, Medium, Airborne 
and Air Assault); and the number of battalions in each brigade.  One can also take shortcuts and 
add entire divisions of various kinds, then modify their brigade and battalion structure as desired; 
or, as shown in the left-hand panel of Figure 9, one can specify each scenario unit individually.  
The other panel in Figure 9 shows a menu to select map views.  The most common kind of view 
presents the military icons, terrain, roads and rivers, control measures, and other “bird’s eye 
view” features of the map, but one can see many other visualizations of the scenario, as we will 
discuss, shortly. 
 
Floating in the right-hand panel of Figure 8 is the Control Engine menu.  It is used to run and 
stop the simulation and planner; single-step them; take a snapshot so one can replay a game from 
that situation; restore a situation; and zoom in or out on the map.  Generally, humans cannot 
think fast enough to win a Capture the Flag game in real time, so they usually let the game run 
for a while and then stop it for a while. 
 

                                                 
1 The GRASP (General Reasoning with AbStract Physics) planner adapts Lakoff and Johnson 
(1987) physical schemas for planning. 
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Figure 8.  The map of a Capture the Flag scenario, a menu for specifying the parameters of 
scenarios, and the “control engine” that runs the simulation and planner.  
 
 

 
Figure 9.  Menus for specifying the units in a Capture the Flag scenario and for configuring the 
visualizations presented in the map. 
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2.2 The Major Components of Capture the Flag 

 
The Capture the Flag system comprises a simulator (AFS), a control architecture (HAC), and a 
planner (GRASP).  In addition, the system provides GUIs for humans to observe and participate 
in war games, a variety of visualizations, and instrumentation and other software support to 
conduct and analyze experiments.  One recent GUI is a three-dimensional display shown in 
Figure 10.  When the user clicks on a unit, the display automatically rotates to show the avenues 
of approach, goals, and threats to the unit.   
 

 
Figure 10.  A 3-dimensional visualization.  Clicking on a unit causes the display to rotate to an 
angle that best shows avenues of approach, the chosen trajectory, and targets and threats relevant 
to the unit.  
 
 
Playing against the system.  A typical experience with Capture the Flag begins with the user 
designing a scenario, then directing his units (Blue, say) against those of the system.  The game 
plays out in the Abstract Force Simulator (AFS), the dynamical analog of a chessboard.  The 
simulator implements the models that make Capture the Flag realistic; models of movement; 
terrain; visibility, reconnaissance and sighting; attrition; and mental attributes such as fatigue and 
morale.   
 
Monte Carlo analysis of COAs.  Alternatively, a human may supply a course of action (COA) 
and direct Capture the Flag to use it to direct, say, Blue units in war games against the GRASP 
planner.  Monte Carlo experiments involve fighting numerous games with roughly the same 
COA.   
 
When a human player directs a unit to, say, attack another, the Hierarchical Control Architecture 
(HAC) takes care of the details:   
 

• HAC finds the best route for the unit to follow,  
• It avoids obstacles on the route and reroutes units dynamically 
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• It manages attacks and maneuvers 
• It transforms units into different formations as the tactical situation and the terrain require.  
• HAC also implements the “eyes and ears” of units, and passes information among units.  

 
The movements of opposing forces (Red, say) are determined by the GRASP planner, which 
coordinates the efforts of its units, directs them against Blue units and flags, and defends terrain 
features and flags.  Just as human directives are managed by HAC and play out in AFS, so with 
GRASP’s directives.   
 

2.3 Types and Attributes of Units 

 
Capture the Flag provides land and air combat units of the following types: Tank, Mechanized 
Infantry, Light Infantry, Cavalry, Artillery, and Aviation.  The smallest units in Capture the Flag 
are battalions, the largest, divisions.  Unlike MODSAF, for example, our Abstract Force 
Simulator does not model the movements of individual vehicles, but rather, treats entire units as 
deformable “blobs.” The shapes of blobs change in response to terrain and tactical requirements.   
 
We take Clausewitz’s physical metaphors very seriously, so the most primitive attributes of units 
are physical attribute: mass, density, shape, velocity, resilience, and elasticity.   The Abstract 
Force Simulator (AFS) determines how these attributes change over time in such a way as to 
model warfare. For example,  
 

•  One effect of attrition is to reduce the mass of a unit; attrition can also change the density 
of the unit (the distribution of its mass within its boundary), or its shape.   

•  Formations and to some extent maneuvers involve changing shape.  Units can adopt 
columnar and frontal formations, as well as wedge (one up, two back) and “V” (two-up, 
one back) formations.  They can change formation while moving, and while engaged, 
though in the latter case the process may be slower.   

•  The velocity of a unit depends on its shape (formation), the kind of terrain it must traverse, 
what kind of unit it is (e.g., infantry are faster than tank units in wooded terrain), whether 
it is in combat, and which tactical maneuver it is following (e.g., units move more slowly 
when they share an avenue of approach).   

•  When units “dig in,” their resilience increases; resilience is resistance to attrition.   
•  The elasticity of a unit is the propensity for another unit to “bounce off” it.  Some tactical 

situations require units to “absorb” others; for example, a favorite of Sun Tsu’s involves 
absorbing an assault, allowing it to penetrate, then collapsing in on the incoming units.   

 
In addition to these physical attributes of units, we model mental attributes such as morale, 
fatigue, and uncertainty.  Crucially, AFS implements mutual dependencies between physical and 
mental attributes.  Thus, attrition reduces morale, and low morale reduces the ability of a unit to 
inflict attrition on other units.  This particular mutual dependency can lead to a downward spiral 
in which a unit becomes progressively more damaged, demoralized and unable to fight back.   
 
Visibility.  Units have limited sensors, and limited knowledge of the battlefield.  A unit becomes 
visible to another only when air reconnaissance spots it, or when the units make visual contact.  
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Units may hide in woods or behind hills.  When humans play against the system, they may select 
an omniscient view of all units (we call this cheating) or they see only those opposing units that 
have been sighted.   
 

2.4 Tactics and other behaviors 

 
The behaviors of units range from low-level physical adjustments (e.g., changing formation) to 
movement and bringing fire, to tactical plans such as passage of lines, to emergent behaviors 
such as the downward spiral of demoralization mentioned earlier.  We have implemented several 
tactical plans:   
 

• For ground units:  Move to a location, occupy (defend) a location, retain a flag, block, 
follow and assume, follow and support, forward passage of line, direct attack, indirect 
attack (e.g., by artillery).   

• For aviation units, reconnaissance, interdiction, close air support, and establishment of air 
superiority.   

 
We are constantly implementing other tactical plans; those on the agenda include flank attack, 
envelopment and double envelopment; and hasty and moving defenses. 
 
Many factors affect behavior, and thus the outcomes of tactical plans.  For example, suppose unit 
A attacks unit B, what will happen?  It depends on these and other factors: 
 

•  The relative masses of A and B (big units tend to win), and the types of the units; 
•  The terrain on which they engage and the types of the units (e.g., tanks do poorly against 

infantry in wooded terrain); 
•  B’s degree of entrenchment; 
•  The time it takes A to move to B (this affects B’s entrenchment and A’s level of fatigue), 

which depends on terrain and the type of unit A; 
•  Whether or not A surprises B (surprise acts as a multiplier on attrition), which itself 

depends on whether A is visible to B; 
•  The morale and fatigue levels of A and B 
•  The formations of A and B 

 
Blobology.  Many tactical plans exploit geometry, for example, flank attacks require exposed 
flanks.  Originally, all units in Capture the Flag were circles, and they maintained this shape in 
all conditions, making it difficult to implement tactical plans.  Now, however, units change shape 
in response to terrain features (e.g., squeezing through a pass), tactical requirements (e.g., 
moving in column), and combat situations (e.g., a wedge formation may be deformed by contact 
with the enemy).  Some examples are shown in Figure 11. We worked on the blobology model in 
CTF with specific emphasis on the integration with the current attrition and movement models in 
CTF. Depending on the specific shape of a blob attrition rates during an engagement will vary to 
simulate the effects of a military unit a being in a particular formation (i.e., delta, line, column). 
This works in a similar way for rates of movement.  
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Figure 11. Effects on the morphology of units.  From left:  A unit compressed by a lake; a unit 
squeezing through a narrow defile between a lake and an impassable area; a wedge formation 
moving east, deformed by the lake and impassable area; a unit moving in column. 
 

2.5  Air Power in Capture the Flag 

In earlier contracts with AFRL we developed a model of air power and an Air Campaign 
Simulator.  This model was ported to Capture the Flag.  Because the air war happens much faster 
than the land war, we do not run the both in the same simulation environment.  To do so would 
slow things down enormously because land units need to be updated much less frequently than 
air units, and checking each land unit at the rate appropriate for air units is wasteful. One 
exception is attack helicopters, which move relatively slowly and are implemented in Capture the 
Flag.  
 
A screen shot for the air component of Capture the Flag is shown in Figure 12. 
 

 
Figure 12.  Air missions in Capture the Flag.  Four mission types are supported:  Air Superiority, 
close air support, reconnaissance, and interdiction. 
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3. Technical Developments by Year 

3.1 Technical Results Year 1 

 
For the Capture the Flag simulator we augmented the military unit, terrain and combat models to 
add the features necessary to provide a realistic baseline capability. Examples of this 
augmentation of the models include adding differential units speeds in the variety of terrain, 
differential combat attrition effects depending on terrain, varying entrenchment rates depending 
on terrain, and elevation effects on combat attrition and sighting. Also included in the new model 
is an enhanced “fog-of-war” system that includes differential sighting distances, terrain and 
elevation effects, sighting on fire and last-time-sighted based unit positions. The interface was 
enhanced to show the positions of units based on the fog-of-war model when this is appropriate. 
 
We also started building the defeat modeling mechanisms based on our discussions with General 
Holcombe. The plan at this point was to develop the models independently from Capture the 
Flag and run a series of experiments to test their validity. Integration into CTF will be the final 
phase of this work. 
 

3.2 Technical Results Year 2 

 
For the visualization effort we worked on smoothing surfaces to help remove noise in an attempt 
to discover the actual features of the scenario. We are also working on extending the existing 
data collection to more complex scenarios (e.g., more blobs on either team; more complex 
planning, timing, etc.). We investigated methods for building formal models for particular 
physical engagement strategies/schemas (e.g., gap model). This work was moving us in the 
direction of finding relations between these physical engagement schemas (e.g., when you shift 
from a "head-on attack" to "moving through a pass between enemy forces"). 
 
During this phase we had a series of very productive meetings with our source matter expert, 
General Otstott, where we presented the latest enhancements to the CTF models. This work 
included a more sophisticated combat terrain effects, an enhanced fog-of-war model, and a better 
handling of multi-unit formations. General Otstott indicated that while the fog-of-war 
enhancements contributed positively to the realism of the simulation they fell short of providing 
the correct sense of lack of information present during an actual battle. After a significant 
discussion it was decide that we needed to adopt a probabilistic model of unit sighting that took 
into account unit types, distances and terrain. In addition to solving some of the problems 
indicated by General Otstott a new probabilistic model would integrate nicely with a possible 
future air power additions to the simulation. 
 
We completed a prototype of the defeat model and successfully integrated it into Capture the 
Flag. It currently takes models attributes such as courage, fear, health and moral and has as input 
parameters rates of attrition, style of fighting and isolation. More information is available in the 
Heeringa paper below Preliminary experimentation indicates that it adds reasonable effects to the 
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outcomes of simulated engagements. We engaged in further study to determine if we had 
selected a good set of attributes, parameters and effects to model. 
 
We developed in CTF a new visualization of combat force we call Force Flow. We simulated the 
movement of forces into the future taking terrain, the intentions of the agents and the interactions 
between agents into account.  We produced 2D visualizations of the resulting force data and 
worked briefly on a 3D map-based visualization capability. 
 
We also designed a new artillery model in CTF that provides for more realistic control. Artillery 
are targeted on regions using an implicit spotter. Fire and damage rates are variable depending on 
the number of rounds previously fired at a region and number of tubes available. Requests for 
fires will be queued and priorities can be specified. The first phase of a new artillery model 
which allows artillery units to place fire in a specific geometric area (previously only other units 
could be targeted). In addition artillery now undergoes a ranging effect where the fire becomes 
more accurate over time.  
 
In the CTF agent control framework, which we refer to as Hierarchical Agent Control (HAC), 
we implemented actions whose purpose was to take sensor data from one or more sources and 
produce an interpretation. We call these data combining actions “Abstract Sensors”. Abstract 
sensors can be used by the machine planner and the human planner to build a high level, 
composite picture from low-level data. Making an algorithm like Force Flow into an abstract 
sensor involves specifying who the generators of the lower-level data are, the format of the 
combined data, and when and exactly how the data will be produced. We did this for Force Flow 
and integrated this new data source into the machine planner. 
 
In the area of improved CTF combat models we began designing an enhanced blobology model 
in CTF.  The new model simulates blobs as a collection of particles connected by spring-like 
forces. The reason for this effort was a realization that our previous geometrically static 
modeling of blobs precluded us from simulating a range of interactions between opposing groups 
of units. Specifically, it was difficult to accurately simulating a penetration or pulling two units 
apart “at the hinge” unless we could have some form of blob deformability. 
 
We enhanced the set of plans currently used by the machine planner to use the new blobology 
model. We began designing a new layer of plans that involve operational goals like double 
envelopment and turning a flank. 
 
We also built an enhanced defeat mechanism in CTF. The original mechanism used a simple 
isolation and attrition check. The enhanced defeat mechanism uses factors like courage, fear, 
health, morale and warfare style to calculate what we call and “effective fatigue” value. Effective 
fatigue is combined with state information and modifier functions to produce an overall 
probability of surrender.  
 

3.3 Technical Results Year 3 
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We added additional functionality to the artillery model that allows artillery units to be placed in 
direct or indirect support of other units. In addition, added an artillery counter fire model where 
artillery becomes vulnerable to enemy artillery fire when it fires from the same location for a 
certain length of time. 
 
We worked on the blobology model in CTF with specific emphasis on the integration with the 
current attrition and movement models in CTF. Depending on the specific shape of a blob 
attrition rates during an engagement will vary to simulate the effects of a military unit a being in 
a particular formation (i.e., delta, line, column). This works in a similar for rates of movement.  
 
We have also did some studies of the stochastic defeat mechanism in CTF. Our preliminary 
results lead us towards a conclusion that it is very difficult with this model to determine which 
parameters are important and that the probabilities being used to determine surrender often 
combine in undesirable ways. To rectify these problems we have begun investigating a simpler 
model fore defeat which involves fewer parameters and relies on less “rolls of the dice”. 
 
We have also used nearest neighbor techniques to cluster data from simulated battles. This 
technique allows one to take an n-dimensional space of possible decisions and determine where 
to take actions that will lead to desired outcomes. One possible visualization from this work is a 
chart where decision boundaries are highlighted with probabilities of outcomes clearly 
delineated.  
 
The first version of the blobology model in CTF was completed. We tested this model with a 
static defense scenario in order to calibrate the attrition and movement models. We initiated a 
competition where different sub-groups in the lab compete against one another to build plans for 
different types of scenarios. The first scenario is the static defense scenario where the red force is 
defending a fixed objective with a smaller force than the blue force. For the sake of simplicity we 
did not include artillery plans in this initial phase of the competition.  
 
For the second phase of this competition we tackled a meeting engagement style scenario and 
will be including artillery plans. As part of the plan competition started using Tapir to write plans 
in CTF. Tapir is a semi-declarative agent control language that was developed by us for the RKF 
project. Tapir has constructs for defining agents, sensors, actions, and messages. It has 
mechanisms for handling multiple agents, re-sources, concurrent actions, debugging and 
instrumentation. Tapir is built upon and extends the Hierarchical Agent Control (HAC) 
architecture.  
 
The work on nearest neighbor techniques for clustering data from simulated battles was 
completed. Nearest neighbor queries on R-trees use a number of pruning techniques to improve 
the search.  We examined three common 1-nearest neighbor pruning strategies and generalized 
them to k-nearest neighbors.  This generalization clears up a number of prior misconceptions.  
Specifically, we showed that the generalization of one pruning technique, referred to as strategy 
2, is non-trivial and requires the introduction of a new algorithm we call promise-pruning.  In 
addition, we showed that, contrary to other claims, applying this generalized strategy to k-nearest 
neighbor queries results in a theoretically better search.  This discovery is reinforced with 
empirical results showing the success of promise-pruning on both random and real-world data.  
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Enhancements were made to the AFS and HAC event systems that allowed us to explicitly 
model events - both exogenous and internal coordination events. This provides the action/plan 
designer the ability to build more sophisticated temporal coordination schemes. This work is 
leading towards a fully realized planning language where plans and actions can be written to 
handled opportunistic events that occur during the execution of a prescribed action. 
 
Along similar lines we also worked with Lieutenant General (US Army Retired) Charles Otstott 
to develop realistic actions and plans for the CTF simulator. We adapted scenarios from our 
previous HPKB work – scenarios from the Kansas area involving division size units – and 
augmented these scenarios with better planning for the agent and the adversary.  
 

3.4 Technical Results Year 4 

 
We ported CTF to the new Macintosh operating system OS X. We have also rewritten some of 
the underlying interface protocols in the simulator to allow us to rapidly prototype different types 
of interface interaction schemes and visualizations. The new interface context system lets us 
have graphical user interfaces that alter their appearance and function based on the general 
domain in which the simulator is operating. For example, in a the default CTF simulation mode 
the units, terrain and actions are all based on the domain of echelon division level and the GUI 
reflects this by allowing actions, units and terrain that are appropriate to that domain. However, 
the underlying simulator can also support a more detailed simulation of – say at the battalion 
level down to individual squads. In this case the GUI can be tailored to present and allow 
actions, units and terrain that are appropriate to that level of simulation. We have not yet 
implemented this more detailed level of GUI in the military domain, but this general framework 
has been used to transform CTF into a simulation of Robots in an office environment, a 
simulation of Robots in a infinite two-dimensional plan, a simulation of Rats doing search and 
rescue operations and a cellular biology simulation. 
 
 

4. Products  
Capture the Flag (CTF) is a system for dynamic planning in an adversarial domain. It includes as 
components the Abstract Force Simulator (AFS), a domain-general simulator of agents applying 
forces; the Hierarchical Agent Control architecture, an agent control architecture; and a planner. 
 
HAC is a general toolkit for designing an action hierarchy. It supports action abstraction, a multi-
level computational architecture, sensor integration, and planning.  
 
Tapir is a general purpose, semi-declarative agent control language that extends and enhances the 
HAC. The language is built around constructs that define agents, sensors, actions, and messages. 
It has mechanisms for handling multiple agents, a flexible resource model, and multiple means 
for structuring concurrent actions. 
 
The following systems and prototypes are available for dissemination: 
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AFS and CTF.  POC: David Westbrook, westy@cs.umass.edu. AFS and CTF currently run in 
Common Lisp. There is a GUI available written in Macintosh Common Lisp.  See  http://eksl-
www.cs.umass.edu/research/ctf. 
 
HAC: POC: David Westbrook, westy@cs.umass.edu. AFS and CTF currently run in Common 
Lisp. See  http://eksl-www.cs.umass.edu/research/ctf. 
 
Tapir: POC: Gary W. King, gwking@cs.umass.edu. Tapir currently runs in Common Lisp. See  
http://eksl-www.cs.umass.edu/research/ctf. 
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Heeringa, Brent and Paul Cohen. 2000. An Underlying Model for Defeat Mechanisms. Presented 
at AAAI Fall Symposium, 2000 Workshop on Simulating Human Agents.  
 
St. Amant, Robert. Planning Meets User Interface Design: Affordances, Ibots and PUM s. IUI 
workshop on Planning for Intelligent User Interfaces, 2000.  
 
Atkin, Marc, David L. Westbrook, and Paul R. Cohen. HAC: A Unified View of Reactive and 
Deliberative Activity .Working Notes of the European Conference on Artificial Intelligence 
Workshop, Balancing Reactivity and Social Deliberation in Multi-Agent Systems.  
 
Firoiu, Laura. 2000. Rule Induction from Noisy Examples. Presented at AAAI Workshop: 
Learning Statistical Models from Relational Data.  
 
Ramoni, Marco, Paola Sebastiani and Paul R. Cohen. 2000. Multivariate Clustering by 
Dynamics. Proceedings of the Seventeenth National Conference on Artificial Intelligence, pp. 
633-638. AAAI Press/The MIT Press: Menlo Park/Cambridge.  
 
Oates, Tim, Matthew D. Schmill and Paul R. Cohen. 2000. A Method for Clustering the 
Experiences of a Mobile Robot that Accords with Human Judgments.  Proceedings of the 
Seventeenth National Conference on Artificial Intelligence, pp. 846-851. AAAI Press/The MIT 
Press: Menlo Park/Cambridge.  
 
Schmill, Matthew D, Tim Oates and Paul R. Cohen. 2000. Learning Planning Operators in Real-
World, Partially Observable Environments. Proceedings of the Fifth International Conference on 
Artificial Intelligence Planning and Scheduling, AI Planning Systems, AAAI Press, pp. 246-253.  
 
Cohen, Paul R., Marco Ramoni, and Paola Sebastiani. 2000. Unsupervised Clustering of Robot 
Activities: A Bayesian Approach. Proceedings of the Fourth International Conference on 
Autonomous Agents, pp. 134-135. ACM: New York, NY. 
 
Oates, Tim, Zachary Eyler-Walker and Paul R. Cohen. 2000. Toward Natural Language 
Interfaces for Robotic Agents: Grounding Linguistic Meaning in Sensors. Proceedings of the 
Fourth International Conference on Autonomous Agents, pp. 227-228. ACM: New York, NY. 
 
Oates, Tim, Matthew Schmill and Paul R. Cohen. 2000. Identifying Qualitatively Different 
Outcomes of Actions: Gaining Autonomy Through Learning. Proceedings of the Fourth 
International Conference on Autonomous Agents, pp. 110-111. ACM: New York, NY. 
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Atkin, Marc, Gary King, David L. Westbrook and Paul R. Cohen . 2000. Some Issues in AI 
Engine Design. Presented at AAAI Spring Symposium on Artificial Intelligence and Interactive 
Entertainment. Proceedings of the European Conference on Philosophical Psychology.  
 
St. Amant, Robert. Resolving Conflicts in Collaborative Human - Computer Interaction. AAAI 
Technical Report WS-99-08 (Notes from the Agents' Conflicts workshop.) AAAI Press. 1999.  
 
.Pegram, David A, Robert St. Amant, Mark Riedl. An approach to visual interaction in mixed-
initiative planning. Paper presented at Mixed-Initiative Intelligence Workshop, AAAI-99  
 
Ramoni, Marco, Paola Sebastiani and Paul R. Cohen. 1999. Bayesian Analysis of Sensory Inputs 
of a Mobile Robot. Proceedings of the Second European Conference on Highly Structured 
Stochastic Systems (HSSS-99), Pavia, Italy.  
 
Sebastiani, Paola, Marco Ramoni, Paul R. Cohen, John Warwick and James Davis. 1999. 
Discovering Dynamics using Bayesian Clustering. Proceedings of the Third Symposium on 
Intelligent Data Analysis.  
 
Oates, Tim. 1999. Identifying Distinctive Subsequences in Multivariate Time Series by 
Clustering. Proceedings of KDD-99, International Conference on Knowledge Discovery and 
Data Mining, pp. 322-326.  
 
Provost, Foster, David Jensen and Tim Oates. 1999. Efficient Progressive Sampling. Proceedings 
of KDD-99, International Conference on Knowledge Discovery and Data Mining, pp. 23-32.  
 
Oates, Tim. 1999. Identifying Qualitatively Different Outcomes of Actions: Experiments with a 
Mobile Robot. Paper presented at IJCAI-99, Workshop on Robot Action Planning, pp. 30-36.  
 
Firoiu, Laura and Paul R. Cohen. 1999. Learning Elements of Representations for Redescribing 
Robot Experiences. Presented at Third Symposium on Intelligent Data Analysis. 
 
Firoiu, Laura and Paul R. Cohen. 1999. Abstracting from Robot Sensor Data using Hidden 
Markov Models. Proceedings of the Sixteenth International Conference on Machine Learning, 
pp. 106-114.  
 
Sebastiani, Paolo, Marco Ramoni and Paul R. Cohen. 1999. Unsupervised Classification of 
Sensory Input in a Mobile Robot. Paper presented at IJCAI-99 Workshop on Sequence Learning, 
pp. 23-28.  
 
Rosenstein, Michael T. and Paul R. Cohen. 1999. Continuous Categories for a Mobile Robot. 
Paper presented at IJCAI-99 Workshop on Sequence Learning, pp. 47-53.  
 
Oates, Tim, Laura Firoiu and Paul R. Cohen. 1999. Clustering Time Series with Hidden Markov 
Models and Dynamic Time Warping. Paper presented at IJCAI-99 Workshop on Sequence 
Learning, pp. 17-21.  
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Paul R. Cohen and Mary Litch. 1999. What are contentful mental states? Dretske's theory of 
mental content viewed in the light of robot learning and planning algorithms. Proceedings of the 
Sixteenth National Conference on Artificial Intelligence, pp. 108-113.  
 
Jensen, David, Michael Atighetchi, Regis Vincent and Victor R. Lesser. 1999. Learning 
Quantitive Knowledge for Multiagent Coordination. Proceedings of the Sixteenth National 
Conference on Artificial Intelligence, pp. 24-31.  
 
Oates, Tim and David Jensen. 1999. Toward a Theoretical Understanding of Why and When 
Decision Tree Pruning Algorithms Fail. Proceedings of the Sixteenth National Conference on 
Artificial Intelligence, pp. 372-378.  
  
 
Paul R. Cohen, Vinay Chaudrhi, Adam Pease and Robert Schrag. 1999. Does Prior Knowledge 
Facilitate the Development of Knowledge-based Systems? Proceedings of the Sixteenth National 
Conference on Artificial Intelligence, pp. 221-226.  
 
Oates, Tim, Matthew D. Schmill and Paul R. Cohen. 1999. Efficient Mining of Statistical 
Dependencies. Proceedings of the Sixteenth International Joint Conference on Artificial 
Intelligence, pp. 794-799.  
 
Atkin, Marc, David L. Westbrook and Paul R. Cohen. 1999. Capture the Flag: Military 
Simulation Meets Computer Games. Presented at AAAI Spring Symposium on AI and Computer 
Games.  
 
St. Amant, Robert. 1999. Planning and User Interface Affordances. Proceedings of the Fifth 
International Conference on Intelligent User Interfaces.  
 
Schmill, Matthew D, Tim Oates and Paul R. Cohen. 1998. Learned Models for Continuous 
Planning . Presented at Uncertainty '99: The Seventh International Workshop on Artificial 
Intelligence and Statistics, pp. 278-282.  
 
Atkin, Marc and Paul R. Cohen.  1998.  Physical Planning and Dynamics.  In Working Notes of 
the AAAI Fall Symposium on Distributed Continual Planning, pp. 4-9. 
 
Firoiu, Laura, Tim Oates and Paul R. Cohen.  1998.  Learning a Deterministic Finite Automaton 
with a Recurrent Neural Network.  In Proceedings of the Fourth International Colloquium on 
Grammatical Inference, pp. 90-101. 
 
Cohen, Paul R. and Tim Oates.  1998.  A Dynamical Basis for the Semantic Content of Verbs. In 
The Grounding of Word Meaning:  Data & Models Workshop, AAAI-98, pp. 5-8. 
 
Rosenstein, Michael T. and Paul R. Cohen.  1998.  Symbol Grounding with Delay Coordinates.  
In The Grounding of Word Meaning:  Data & Models Workshop, AAAI-98, pp. 20-21. 
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Utgoff, Paul E. and Paul R. Cohen.  1998.  Applicability of Reinforcement Learning.  In 
Methodology of Applying Machine Learning:   Problem Definition, Task Decomposition and 
Technique Selection Workshop, ICML-98, pp. 37-43. 
 
Oates, Tim. David Jensen and Paul R. Cohen.  1998.  Discovering Rules for Clustering and 
Predicting Asynchronous Events. In Predicting the Future:  AI Approaches to Time Series 
Workshop, AAAI-98, pp. 73-79. 
 
Atkin, Marc, David L. Westbrook, Paul R. Cohen and Gregory D. Jorstad.  1998.  AFS and 
HAC:  Domain-General Agent Simulation and Control.  In Workshop on Software Tools for 
Developing Agents, AAAI-98, pp. 89-95. 
 
Cohen, Paul R., and David Jensen.  1997.  Overfitting Explained. In Preliminary Papers of the 
Sixth International Workshop on Artificial Intelligence and Statistics, pp. 115-122. 
 
Gregory, Dawn E. and Paul R. Cohen.  1997.  Intelligent Assistance for Computational 
Scientists: Integrated Modeling, Experimentation and Analysis.  In Preliminary Papers of the 
Sixth International Workshop on Artificial Intelligence and Statistics, pp. 231-238. 
 
McGeoch, C.C. and Paul R. Cohen.  1997.  How to Find Big-Oh in Your Data Set (and How Not 
To).  In Preliminary Papers of the Sixth International Workshop on Artificial Intelligence and 
Statistics, pp. 347-354. 
 
Oates, Tim, Matthew D. Schmill, David Jensen, and Paul R. Cohen.  1997.  A Family of 
Algorithms for Finding Temporal Structure in Data.  In Preliminary Papers of the Sixth 
International Workshop on Artificial Intelligence and Statistics, pp. 371-378. 
 
Rosenstein, Michael T., Paul R. Cohen, Matthew D. Schmill, and Marc S. Atkin.  1997.  Action 
Representation, Prediction and Concepts.  In AAAI Workshop on Robots, Softbots, Immobots: 
Theories of Action, Planning and Control.  
 
St. Amant, Robert and Paul R. Cohen.  1997.  Building an EDA Assistant:  A Progress Report.  
In Preliminary Papers of the Sixth International Workshop on Artificial Intelligence and 
Statistics, pp. 501-512. 
 
Ph.D. Dissertations 
 
James T. Oates,  2000.  Grounding Knowledge in Sensors: Unsupervised Learning for Language 
and Planning. 
 
Unreferenced Reports, Articles and Editorials 
 
King, Gary W. 2001. LIFT - The LIsp Framework for Testing. University of Massachusetts 
Computer Science Department Technical Report 01-25.  
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Cohen, Paul R., Niall Adams and David Hand. 2001. Finding Patterns that Correspond to 
Episodes. University of Massachusetts Computer Science Department Technical Report 01-11.  
 
Schmill, Matthew and Paul Cohen. 2001. A Motivational System That Drives the Development 
of Activity . University of Massachusetts Computer Science Department Technical Report 01-
12. 
 
Cohen, Paul R . 2000. Learning Concepts by Interaction. University of Massachusetts Computer 
Science Department Technical Report 00-52.  
 
Atkin, Marc, David L. Westbrook, Paul R. Cohen. 2000. Planning in Continuous Adversarial 
Domains. University of Massachusetts Computer Science Department Technical Report 00-17.  
 
Cohen, Paul R., James Davis and John Warwick. 2000. Dynamic Visualization of Battle 
Simulations. University of Massachusetts Computer Science Department Technical Report 00-
16. 
 
King, Gary and Tim Oates. The Importance of Being Discrete: Learning Actions Through 
Interaction. University of Massachusetts Computer Science Department Technical Report 00-15. 
Atkin, Marc S. and Paul R. Cohen.  1999.  Searching Continuous State Spaces Effectively Using 
Critical Points.  University of Massachusetts Computer Science Department Technical Report 
99-36. 
 
Oates, Tim, Zachary Eyler-Walker and Paul R. Cohen.  1999.  Using Syntax to Learn Semantics:  
An Experiment in Language Acquisition with a Mobile Robot.  University of Massachusetts 
Computer Science Department Technical Report 99-35. 
 
Cohen, Paul R.  1998.  Growing Ontologies.  University of Massachusetts Computer Science 
Department Technical Report 98-20. 
 
Schmill, Matthew D.  1998.  A Distributed Approach to Finding Complex Dependencies in Data.  
Computer Science, University of Massachusetts Computer Science Department Technical Report 
98-13. 
 
Piater, Justus and Paul R. Cohen.  1997.  A Randomized ANOVA Procedure for Comparing 
Performance Curves., University of Massachusetts/Amherst. Dept. of Computer Science, 
Technical Report 97-41. 
 
Oates, Tim, David Jensen and Paul R. Cohen.  1997.  Automatically Acquiring Rules for Event 
Correlation from Event Logs. University of Massachusetts Computer Science Department 
Technical Report 97-14. 
 



 

 30

6. Invited and Contributed Presentations 
 
Paul Cohen attended AAAI-99, IDA-99 and IJCAI-99 where several EKSL papers were 
presented.  He also presented the following talks: 
“The Mind Reading Problem.”  Invited Speaker at AAAI-99 Workshop on Mixed Initiative 
Intelligence, Orlando, FL. 
“Data Analysis and the Development of Robot Minds.”  Keynote Speaker at the Third 
Symposium on Intelligent Data Analysis, Amsterdam, the Netherlands. 
“Fourteen Comments on Empirical Methods.”  Invited Speaker at IJCAI-99 Workshop on 
Empirical AI, Stockholm, Sweden. 
“Agent Systems:  The Semantic Challenge.”  Invited Speaker at Dagstuhl Seminar on Agent-
Oriented Software Approaches in Distributed Modeling and Simulation:  Challenges and 
Methodologies, Dagstuhl Castle, Germany. 
“Tots and ‘Bots:  The Development of Cognition.”  Invited Speaker at the British Computer 
Society Specialist Group on Applied Artificial Intelligence and Knowledge-Based Systems, 
Birbeck College, London. 
“8.4 Comments on Empirical Methods.”  Paul Cohen, presented at AAAI Fall Symposium, 
Falmouth MA, November, 1999. 
August 1999:  “Fourteen Comments on Empirical Methods,” Keynote Talk presented by Paul 
Cohen at the IJCAI-99 Workshop on Empirical AI, Stockholm Sweden. 
http://www-eksl.cs.umass.edu/research/aaai_fall1999. 
July 1999:  “Agents Systems: The Semantic Challenge,” presented at Dagstuhl Seminar:  Agent-
Oriented Approaches in Distributed Modeling and Simulation, Frankfurt Germany. 
http://eksl-www.cs.umass.edu/research/Dagstuhl/. 
July 1999:  “The Mind Reading Problem,” Opening Talk by Paul Cohen at the Workshop on 
Mixed Initiative Planning, AAAI-99, Orlando FL.  
http://eksl-www.cs.umass.edu/research/miper/initiative/index.html. 
June 1999:  “Hotwash Themes,” presented by Paul Cohen at DARPA/Control of Agent Based 
Systems Workshop, Northampton MA. 
June 1999:  “The Grid,” presented by Paul Cohen at DARPA/Control of Agent Based Systems 
Workshop, Northampton, MA. 
June 1999:  “Modeling,” presented by Paul Cohen at DARPA/Control of Agent Based Systems 
Workshop, Northampton, MA.  
May 1999:  “Deep Understanding of Courses of Action,” presented by Paul Cohen at the 
DARPA Workshop on Knowledge Based Planning for Coalition Forces, Edinburgh Scotland, 
May 1999.  http://eksl-www.cs.umass.edu/research/nato/index.html. 
February 1999:  “Building and Maintaining Interactionist Onologies,” presented by Paul Cohen 
at AFOSR/HPKB contractor’s meeting, Fort Collins CO. 
January 1999:  “Simulating Tactical Engagements for COA Criticism,” presented by Paul Cohen 
at DARPA/High Performance Knowledge Bases Workshop, Austin TX. 
January 1999:  “Moving Ahead with Metrics: A Case Based Approach,” presented by Paul 
Cohen at DARPA/High Performance Knowledge Bases Workshop, Austin TX.  
May 1998:  “Capture-the-Flag, Briefing,” presented by Paul Cohen at the ARPI PI Workshop, 
Monterey CA.  
http://eksl-www.cs.umass.edu/research/miper/ctf/Pages/index.html. 
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April 1998:  “Physical Planning and Dynamics,” presented by Paul Cohen at the Information and 
Technology Division Planning Seminar Series, Air Force Research Laboratory, Rome NY. 
January 1998:  “EKSL ARPI Work.”  Presented at EKSL-hosted site visit for DARPA/ARPI 
Program Manager, Major Doug Dyer. 
 http://eksl-www.cs.umass.edu/research/miper/dyer/Pages/slides/index.html 
December 1997:  “Recognition and Prediction Based on Dynamics,” presented by Paul Cohen at 
the HPKB PI Meeting, San Diego CA. 
http://eksl-www.cs.umass.edu/research/hpkb/r-p-d/slides/index.html. 
June 1997:  “Semantic Models for Mixed Initiative Plan Evaluation and Repair,” presented by 
Paul Cohen at ARPI PI Meeting, San Diego CA. 
http://eksl-www.cs.umass.edu/research/miper/talkindex.html. 
March 1997:  “Acquiring Conceptual Structure through Activity,” presented by Paul Cohen at 
School of Computer Science, Carnegie Mellon University. 
http://eksl-www.cs.umass.edu/research/conceptual-systems/index.html 
I. Related Service to the ARPI, DARPA and the AI Research Community 
Editorships 
 
Contributions to DARPA Programs 
 
Paul Cohen headed up the evaluation plan for the DARPA High Performance Knowledge Bases 
(HPKB) program from 1997 – 1999, and was a member of the design team for Challenge 
Problem specification. Cohen also consulted to the DARPA Program Managers in the Rapid 
Knowledge Formation program and the Control of Agent Based Systems program. Cohen was 
one of three U.S. academic representatives attending the DARPA Workshop on Knowledge-
Based Planning for Coalition Forces held in Edinburgh, Scotland in May, 1999.  This workshop 
brought together a community of international researchers, developers and government 
representatives to discuss emerging advanced planning technology and how it might be further 
developed to support military coalition planning and execution. The EKSL also hosted a 4-day 
workshop in August 1999 for the LOE-1 and LOE-2 groups in the DARPA Command Post of 
the Future Program. 
 
Paul Cohen served on the following program committees: 

• Fifth and Sixth International Workshops on Artificial Intelligence and Statistics, 1995 
and 1997;  

• Fourteenth National Conference on Artificial Intelligence (AAAI-97);   
• First and Third International Symposium on Intelligent Data Analysis (IDA-95 and IDA-

99).   
• He also served as Co-Chair of the Program Committee and Chair of the Steering 

Committee for IDA-97. 
 
Paul Cohen was nominated, and interviewed for the position of Director of DARPA’s 
Information Technology Office in 1999. He was promoted to Full Professor of Computer 
Science in September, 1995, and was awarded a University of Massachusetts Faculty Fellowship 
in 1998 for outstanding research and scholarship. 




